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Symmetry-enhanced spectral analysis via the spectral method and filter diagonalization

Rongqing Chen and Hua Guo*
Department of Chemistry, University of Toledo, Toledo, Ohio 43606

~Received 6 February 1998!

A symmetry-adapted propagation scheme is introduced to enhance the efficiency of spectral analysis using
either the spectral method or filter diagonalization. The essence of the method is to project out symmetry
components from asinglewave packet that contains all the symmetry species. These components are then used
to recover the spectrum and/or energy wave functions for each symmetry species. The adaptation of symmetry
not only facilitates the symmetry assignment of the eigenstates, but also reduces the number of propagation
steps because the density of states for individual symmetry species is typically much lower than that of the
overall spectrum. Our approach is numerically superior to the conventional symmetry-adapted methods be-
cause the propagation of multiple wave packets is avoided. A simplified atomic model with two one-
dimensional electrons is used as a numerical example.@S1063-651X~98!11506-4#

PACS number~s!: 02.70.2c, 31.15.2p, 03.65.2w
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I. INTRODUCTION

Recently, there has been a proliferation of propagat
based methods in quantum dynamical and spectroscopic
culations@1,2#. Within such a method, a series of propag
tion states, or wave packets, is generated by a propaga
scheme:uCk&5Ûk(Ĥ)uC0& where uC0& is an initial wave
packet andÛk(Ĥ) is a generalized propagator. For tim
propagation on a uniform grid,tk5kt wherek is an integer,

the propagator is defined asÛk(Ĥ)5e2 iĤ tk ~atomic units are
used throughout the paper unless stated otherwise!. In a
polynomial propagation@2,3#, such as the Chebyshev@4# or
Lanczos propagation@5#, the propagator is akth order poly-
nomial of the HamiltonianĤ. The propagation states ar
then used to recover energetic and/or temporal informa
of the system@4,6–11#. Typically, the major operation in a
propagation based method is matrix-vector multiplicatio
which has favorable scaling laws in both cpu and mem
requirements. In many cases, the Hamiltonian matrix
sparse and can be generated on the fly.

In this work, we concentrate on the determination
eigenenergies and eigenstates for quantum systems, bu
method introduced here can be easily adopted for other q
tum mechanical problems. There are two common
proaches in spectral analysis. The spectral method@12,13#
takes advantage of the unitary transformation between
energy domain and the generalized time domain@3#. A well-
known example is the exponential Fourier transform betw
energy and time@14#. For the Chebyshev propagator, i
angle~i.e., the effective energy! domain is related to its orde
~i.e., the effective time! domain by a cosine Fourier trans
form @4#. The spectrum and eigenstates of a system can
determined via the appropriate transformation from the c
relation function and the propagation states, respectively
the spectral method, the energy resolution is inversely p
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portional to the number of propagation steps~i.e., the uncer-
tainty principle!.

An alternative approach is the method of filter diagon
ization @15,16#. The strategy here is to combine relative
short propagation with a variational solution of the eige
problem in a small space. To this end, a number of filte
states in a prespecified energy range is first assembled
the propagation states using the spectral method. These
ergetically localized states are then used as primitive base
construct the Hamiltonian matrix. Finally, the eigenproble
is solved by diagonalizing the Hamiltonian in the relative
small subspace spanned by the filtered states. It has
argued@17# that the spectral method can be regarded a
special case of filter diagonalization in which a single filter
used. The convergence of filter diagonalization still depe
on the number of propagation steps, but the final diagon
ization can greatly improve the resolution. Filter diagonaliz
tion is ideal for extracting eigenvalues and eigenstates
given energy range@15–21#. If one is only interested in the
spectrum in this range, the correlation function alone is s
ficient to construct the Hamiltonian matrix and the expli
calculation and storage of the filtered states are unneces
@22–25#.

When the system under investigation possesses sym
try, the above schemes can be modified to improve e
ciency. In the pioneering work of Feitet al. @13#, for ex-
ample, three symmetry-adapted wave packets w
propagated to take advantage of the threefold rotational s
metry of the He´non-Heiles system. Each propagation gen
ates a spectrum in the corresponding symmetry. A sim
strategy was taken in a recent study of acetylene by Liu
Muckerman @26#. The advantage of such a symmetr
adapted approach is obvious. According to the uncerta
principle, the resolution of a spectrum is inversely prop
tional to the number of propagation steps. The breakdown
the spectrum into symmetry species is likely to reduce
density of states and thus the number of propagation st
Furthermore, it often occurs that energy levels with differe
symmetries form nearly degenerate clusters in the spectr
Under such circumstances, the symmetry-adapted appr
represents a natural and efficient way to remove the mu

y
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plicity and to assign symmetry to the energy levels. T
strategy is similar to the symmetry decomposition of t
Hamiltonian matrix in direct diagonalization. The comput
tional savings can be significant for highly excited states
for large systems. However, such an approach comes
price of propagating multiple wave packets.

The method suggested here retains the same spirit a
conventional symmetry-adapted method mentioned ab
but differs in that only a single wave packet needs to
propagated. All the symmetry components are projected
from this wave packet at each propagation step, thanks to
commutability between the symmetry operators and the
tem Hamiltonian. Our method thus has the same accurac
the multiple wave packet method, but much less compu
tional costs. In the next section, the method is presente
more detail. In Sec. III, a simplified multielectron atom
model is employed to illustrate its applicability and ef
ciency. The conclusion is presented in Sec. IV.

II. THEORY

We seek, using propagation based methods, the effic
solution of the time-independent Schro¨dinger equation

ĤuEn&5EnuEn&, ~1!

whereEn and uEn& are the discrete eigenvalues and the c
responding eigenstates of the system HamiltonianĤ, respec-
tively. The direct diagonalization approach is rejected
cause of its inefficiency for large problems. We furth
consider a physical system belonging to a symmetry grouS
that contains dS symmetry operators ŝiPS with i
51,2,...,dS . By definition, a symmetry operator commut
with the Hamiltonian of the same system:ŝi Ĥ5Ĥŝi . In
other words, it is always possible to find common eigensta
for both the Hamiltonian and the symmetry operators. F
ther, the symmetry operators should also commute with
propagator,ŝi Ûk(Ĥ)5Ûk(Ĥ) ŝi , becauseÛk(Ĥ) is an op-
erator function ofĤ. Therefore, symmetry properties of
wave packet are conserved during propagation. In
method used by Feitet al. @13#, multiple symmetry-adapted
initial wave packets were constructed by symmetrizati
The propagation of each wave packet results in an indep
dent series of propagation states that can be used to gen
the symmetry-adapted spectrum. This strategy is more
cient than the single wave packet propagation with no sy
metry adaptation.

In our method, a single wave packet is propagated and
symmetry-adapted propagation states are obtained at e
propagation step by projection. The initial wave packet
designed to contain all the symmetry species,

uC0&5 (
m51

M

amuC0
~m!&, amÞ0, ~2!

whereM denotes the number of symmetry species, or ir
ducible representations, belonging to the symmetry groupS.
The symmetry-adapted initial wave packets, which are
eigenstates of the corresponding symmetry operators, ca
obtained by using symmetry projection operators
e
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uC0
~m!&5 P̂muC0&. ~3!

The construction of the projection operators is well doc
mented@27#. A projection operatorP̂m also commutes with
the Hamiltonian and the propagator since it is a linear co
bination of the symmetry operatorsŝi . As a result, the
propagation does not mix different symmetry species. T
kth step symmetry-adapted propagation states can be
tained by the projection of a single wave packet:

uCk
~m!&[Ûk~Ĥ !uC0

~m!&5Ûk~Ĥ !P̂muC0&

5 P̂mÛk~Ĥ !uC0&5 P̂muCk&. ~4!

In other words, a single wave packet gives rise toM
symmetry-adapted propagation states.

Often, correlation functions are the only quantities need
in spectral analysis. Thus,M symmetry-adapted correlatio
functions can be calculated from a single propagation

Ck
~m!5^x~m!uCk

~m!&5^x~m!uCk&5^xuCk
~m!&, ~5!

where the idempotency of the projection operator, (P̂m)2

5 P̂m , is used for the second and third parts of the equat
The stateux (m)& can be arbitrarily chosen provided it has th
appropriate symmetry, but it is typically given by th
symmetry-adapted initial wave packetuC0

(m)&. In this case,
Eq. ~5! yields the autocorrelation function. According to E
~5!, the correlation function can be calculated in one of t
three forms. If the projection can be done with minimal co
putational resources, the first or the third form is preferr
for reasons that become clear below. In cases where the
jection is expensive, the second form is numerically favo
because only the initial state needs symmetrization.

The efficiency of the method can be further improved
one can take advantage of the inherent symmetry of
propagator. For example, the length of a time autocorrela
function can be doubled becauseC2k[^C0uC2k&5^CkuCk&
and C2k215^Ck21uCk& @28#. Similar savings can be
achieved for the Chebyshev propagation@Ûk~Ĥ!
5cos(k arccosĤ)] as well @4,22#:

C2k2 j52^Ck2 j uCk&2Cj for j 50,1. ~6!

However, such extensions can only be applied when
symmetry-adapted propagation states are explicitly projec
out at all the steps. If the second part of Eq.~5! is used to
calculate the correlation function, no such saving is perm
ted.

The symmetry-adapted propagation states and correla
functions can be subsequently employed to determine
eigenvalues and eigenstates via either the spectral metho
filter diagonalization. In this work, the eigenproblem
solved for a prespecified energy range using a low stor
version of the filter-diagonalization method@22–25#. Specifi-
cally, a generalized eigenequation

HB5ESB ~7!

is solved using anEISPACK routine @29#. The Hamiltonian
(H) and overlap (S) matrices in a subspace spanned by
filtered statesuC(El)&5F(ĤuEl)uC0& can be obtained di-
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7290 57RONGQING CHEN AND HUA GUO
rectly from the autocorrelation function with no explic
computation of the filtered states@25#

Hll 85^C~El !uĤuC~El 8!&

5 (
m50

2K21

F~EmuEl !EmF~EmuEl 8!G~Em!, ~8a!

Sll 85^C~El !uC~El 8!&

5 (
m50

2K21

F~EmuEl !F~EmuEl 8!G~Em!, ~8b!

whereK is the number of Chebyshev propagation steps. T
spectral function is expressed as a discrete cosine Fo
transform of the autocorrelation function in the Chebysh
order domain

G~Em!5 (
k50

2K21

~12dk0/2!cos~k arccosEm!Ck , ~9!

and $Em% are the Gauss-Chebyshev quadrature points.
more details of the method, confer Ref.@25#.

Since our approach propagates only a single wave pa
yet provides an equal amount of information, the compu
tional cost for the propagation is significantly reduced co
pared with the multiple wave packet approach of Feitet al.
@13#. This is most conspicuous for systems with largeM .

III. MODEL AND RESULTS

To numerically test the method proposed in the previo
section, we used a simple atomic model consisting of t
one-dimensional spinless electrons@30#. This model has
been used to study multiphoton ionization of multielectr
atoms in intense laser fields@30,31#. The Hamiltonian of the
system is given below

Ĥ52
1

2

]2

]x1
22

1

2

]2

]x2
22

2

A«1x1
2
2

2

A«1x2
2

1
2

A«1~x22x1!2
, ~10!

where«50.55.
Obviously, the system has the following symmetry ope

tions: the permutation between the two electro
@ ŝ1 :(x1 ,x2)→(x2 ,x1)# and the inversion of the two coord
nates @ ŝ2 :(x1 ,x2)→(2x1 ,2x2)#. Thus, the symmetry
group contains four elements:S5$1̂,ŝ1 ,ŝ2 ,ŝ1ŝ2% since ŝ1

2

5 ŝ2
251̂ and ŝ1ŝ25 ŝ2ŝ1 . Given an arbitrary wave function

C(x1 ,x2), four symmetry species can be constructed:

C~11 !~x1 ,x2!5@C~x1 ,x2!1C~x2 ,x1!

1C~2x1 ,2x2!1C~2x2 ,2x1!#/4,

~11a!
e
ier
v

or

et
-
-

s
o

-
s

C~12 !~x1 ,x2!5@C~x1 ,x2!1C~x2 ,x1!

2C~2x1 ,2x2!2C~2x2 ,2x1!#/4,

~11b!

C~22 !~x1 ,x2!5@C~x1 ,x2!2C~x2 ,x1!

2C~2x1 ,2x2!1C~2x2 ,2x1!#/4,

~11c!

C~21 !~x1 ,x2!5@C~x1 ,x2!2C~x2 ,x1!

1C~2x1 ,x2!2C~2x2 ,2x1!#/4,

~11d!

where the superscripts of the symmetrized wave functi
C (s1s2) denote the sign of the eigenvalues of the permutat
and inversion operators

ŝ1C~s1s2!5s1C~s1s2!, ŝ2C~s1s2!5s2C~s1s2!. ~12!

Similarly, four symmetry-adapted autocorrelation functio
can be defined@cf. Eq. ~5!#.

In our numerical test reported here, a square Fourier g
was used for the two coordinates: 512 points are evenly
tributed in @280 a.u. 80 a.u.# for both x1 andx2 . The Car-
tesian coordinate system is capable of reflecting the inhe
symmetry of the system. The spectral span of the discret
Hamiltonian with a kinetic energy truncation of 20 a.u.
approximately between23 and 22 a.u., which is rescaled t
@21,1# for the Chebyshev propagator. The spatial grid
certainly insufficient to converge high Rydberg states due
the long range Coulomb tail. However, our main concern
this work was on how the filter diagonalization can be e
hanced by the symmetry adaptation. Hence, the discret

TABLE I. The lowest 20 eigenenergies of the model atom.

n En ~a.u.! s1s2

1 22.896990 11

2 22.297258 22

3 22.163914 12

4 22.096496 21

5 22.078994 11

6 22.026408 22

7 22.007633 12

8 21.989979 21

9 21.985736 11

10 21.970025 22

11 21.963992 12

12 21.957250 21

13 21.955622 11

14 21.949004 22

15 21.946340 12

16 21.943111 21

17 21.942322 11

18 21.938927 22

19 21.937495 12

20 21.935915 21
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Hamiltonian merely serves as a numerical prototype. T
action of the Hamiltonian onto a wave packet was evalua
using the fast Fourier transform method@13,32#. The eigen-
values in the range@23 a.u., 21.5 a.u.# were determined
using the filter-diagonalization method outlined in the la
section. Specifically, a wave packet containing all the sy
metry species was propagated in the Chebyshev order
main @4#. Autocorrelation functions were calculated for th
original wave packet and for the four symmetry species@Eq.
~5!#. The five correlation functions were then used to co
struct the corresponding Hamiltonian and overlap matri
@Eqs. ~8! and ~9!# @25# that were subsequently diagonalize
via a generalized eigensolver@29#. The results are denoted a
either filter diagonalization~FD! or symmetry-adapted filte
diagonalization~SAFD!.

The lowest 20 converged eigenvalues of the discreti
Hamiltonian are listed in Table I along with their symmet
assignment. The ground level is of~11! symmetry and well
separated from the excited levels. The excited levels ap
to form four-component clusters, which become increasin
degenerate as energy increases. The fourfold near de
eracy can be attributed to the permutation and inversion s

FIG. 1. Energy gaps as functions of energy for~a! the overall
spectrum and~b! the symmetry-adapted spectra. The energy
given in a.u.
e
d

t
-
o-

-
s

d

ar
ly
en-

-

metries of the system and to the weak coupling between
two electrons. The autocorrelation functions were calcula
using projected propagation states@first part of Eq.~5!# to
facilitate the doubling of the propagation steps@cf. Eq. ~6!#.
For 2K53000, all the eigenvalues below21.5 were con-
verged beyond seven significant figures. The converge
with other adjustable filtering parameters was also check

The convergence rate of filter diagonalization with resp
to the number of propagation steps is primarily determin
by the smallest energy gap in the spectrum. In Fig. 1,
energy gap between two adjacent levels (DEn5En2En21)
is plotted as a function of energy for the overall spectru
~upper panel! and for each of the four symmetry speci
~lower panel!. The smallest energy gap (DE53.8
31026 a.u.) for the overall spectrum occurs nearE5
21.7288 a.u. between two nearly degenerate states with
ferent symmetries. This diminishingly small energy gap b
comes a bottleneck for the conventional spectral analy
Indeed, the 70th and 71st states cannot be resolved usin
conventional filter diagonalization even for the longe
propagation (2K532 000) carried out by us. As shown i
Table II, only one of them can be identified.~The error listed
in this and the next tables is defined as the difference
tween an eigenvalue and the corresponding ‘‘exact’’ val
which is obtained with SAFD and 2K532 000.! This should
not come as a surprise because such a fine resolution w
require;106 Chebyshev propagation steps according to
uncertainty principle.

On the other hand, the energy gap for the symme
adapted spectra, as shown in Fig. 1~b!, is typically much
larger than that of the overall spectrum. This is because
symmetry decomposition removes much of the four-fo
near degeneracy. For the two states discussed in Table II
example, the SAFD had no problem in converging them a
only about one-tenth of propagation steps were needed.

Interestingly, the energy gaps for all four symmetry sp
cies in this model fall roughly on a single curve, as shown
Fig. 1~b!. This can be attributed to the weak coupling b
tween the two electrons and the resulting degeneracy.
smallest gap occurs atE521.9315 a.u. between two~11!
~21st and 24th! states. This energy gap (DE54.0
31023 a.u.) is approximately three orders of magnitu
larger than the smallest gap of the overall spectrum. The
fore, much fewer Chebyshev steps were needed to conv
the eigenvalues. Table III presents some data to illustrate
convergence with respect to the propagation steps for
states in the vicinity of the energy. It is obvious that t
SAFD converges significantly faster than the conventio
FD. The results in Tables II and III indicate that th
symmetry-adapted filter diagonalization can at least red
the computationalcost by a factor of five for this syste

s

all
oted as
TABLE II. Convergence with respect to 2K for two levels with the smallest energy gap in the over
spectrum. The symmetry-adapted filter diagonalization and conventional filter diagonalization are den
SAFD and FD, respectively.

Energy~a.u.!
dE ~SAFD!
2K51600

dE ~SAFD!
2K52000

dE ~FD!
2K516 000

dE ~FD!
2K532 000

E70 21.728 815 305 597 22.431027 27310212 Missed Missed
E71 21.728 811 496 969 3.631026 3.031029 27.231029 28.031028
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TABLE III. Convergence with respect to 2K for four levels nearE521.93 a.u. ~see text!. The
symmetry-adapted filter diagonalization and conventional filter diagonalization are denoted as SAFD a
respectively.

Energy~a.u.!
dE ~SAFD!
2K52500

dE ~SAFD!
2K53000

dE ~FD!
2K516 000

dE ~FD!
2K520 000

E20 21.935 914 824 370 2.331028 21.531029 21.531027 5.0310211

E21 21.935 523 855 470 21.731025 2.131029 28.831027 3.7310210

E23 21.931 892 900 658 6.231028 3.831029 1.331025 3.931028

E24 21.931 510 559 410 2.331025 21.031029 Missed 2.231026
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IV. CONCLUSION

Many physical systems possess certain types of sym
try. It is thus important to take advantage of the symmetry
numerical calculations, particularly for large systems and
highly excited states. We have shown in this work that
spectral analysis can be enhanced by symmetry adapta
In our method, only a single wave packet is propagated
the symmetry components are obtained by using projec
operators along the propagation. Hence, the propagatio
multiple symmetry-adapted wave packets is avoided. T
numerical results clearly demonstrated that symmetry ad
tation can significantly improve convergence. There are
major reasons for the symmetry enhancement. First, the
sity of states in each symmetry species is reduced on ave
by a factor of M ~M54 for the numerical test!. The
M -factor scaling law typically cuts the number of propag
tion steps to 1/M . Second and sometimes more important
the symmetry decomposition removes the symmetry-indu
near degeneracy responsible for the slow convergence in
spectral analysis with no symmetry adaptation. The remo
of the near degeneracy results in an additional improvem
in numerical efficiency over theM -factor scaling law.

A different way to understand the enhancement is to co
pare the scheme suggested here with the block metho
s.

f-
e-
n
r
e
on.
d
n
of
e
p-
o
n-
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-
,
d
he
al
nt

-
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which a number of initial states is propagated simultaneou
@33,34#. In our method, the propagation of multipl
symmetry-adapted wave packets is implicitly executed
the propagation of a single wave packet. This is poss
because the symmetry components are mutually orthog
and the projection operators commute with the propagato
this sense, our scheme is an implicit block method that
the advantage of the block method but costs less. Of cou
the symmetry adaptation can also be applied to the bl
method to enhance its own efficiency.

Admittedly, the model used to illustrate the method
oversimplified. However, the results reported for this n
merical prototype are encouraging and revealing. Calcu
tions with larger systems, such as the vibrational spectrum
planar acetylene, are currently underway and symmetry
hancement has been found to be significant. The results
be published elsewhere@35#.
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