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Symmetry-enhanced spectral analysis via the spectral method and filter diagonalization
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A symmetry-adapted propagation scheme is introduced to enhance the efficiency of spectral analysis using
either the spectral method or filter diagonalization. The essence of the method is to project out symmetry
components from ainglewave packet that contains all the symmetry species. These components are then used
to recover the spectrum and/or energy wave functions for each symmetry species. The adaptation of symmetry
not only facilitates the symmetry assignment of the eigenstates, but also reduces the number of propagation
steps because the density of states for individual symmetry species is typically much lower than that of the
overall spectrum. Our approach is numerically superior to the conventional symmetry-adapted methods be-
cause the propagation of multiple wave packets is avoided. A simplified atomic model with two one-
dimensional electrons is used as a numerical examplE63-651%98)11506-4

PACS numbegps): 02.70—-c, 31.15-p, 03.65-w

I. INTRODUCTION portional to the number of propagation stéps., the uncer-
tainty principle.

Recently, there has been a proliferation of propagation An alternative approach is the method of filter diagonal-
based methods in quantum dynamical and spectroscopic cakation [15,16. The strategy here is to combine relatively
culations[1,2]. Within such a method, a series of propaga-short propagation with a variational solution of the eigen-
tion states, or wave packets, is generated by a propagatigproblem in a small space. To this end, a number of filtered
scheme:| W, )=U(H)|¥,) where|¥y) is an initial wave States in a pr_especified energy range is first assembled from
packet andUk(I:|) is a generalized propagator. For time the p_ropagauon states using the spectral me'gho_d_. These en-
propagation on a uniform grid, =k~ wherek is an integer, ergetically Iocahzeq states are t_hen _used as primitive bases to

. . D e ) ) construct the Hamiltonian matrix. Finally, the eigenproblem
the propagator is defined & (H)=e™""' (atomic units are  jg solved by diagonalizing the Hamiltonian in the relatively
used throughout the paper unless stated othejwisea  small subspace spanned by the filtered states. It has been
polynomial propagatiofi2,3], such as the Chebyshé4] or  argued[17] that the spectral method can be regarded as a
Lanczos propagatiofb], the propagator is &th order poly-  special case of filter diagonalization in which a single filter is
nomial of the HamiltonianH. The propagation states are used. The convergence of filter diagonalization still depends
then used to recover energetic and/or temporal informatio@n the number of propagation steps, but the final diagonal-
of the systen4,6—11. Typically, the major operation in a ization can greatly improve the resolution. Filter diagonaliza-
propagation based method is matrix-vector mu|tip|ication'ti0n is ideal for extracting eigenvalues and eigenstates in a
which has favorable scaling laws in both cpu and memongiven energy ranggl5-21. If one is only interested in the

requirements. In many cases, the Hamiltonian matrix i$Pectrum in this range, the correlation function alone is suf-
sparse and can be generated on the fly. ficient to construct the Hamiltonian matrix and the explicit

In this work. we concentrate on the determination of¢@lculation and storage of the filtered states are unnecessary

eigenenergies and eigenstates for quantum systems, but t[?eZVT/ﬁgn the svstem under investigation DOSSESSEs Svmme-
method introduced here can be easily adopted for other quart1- the ab y h b 9 dif g 0 Y fi-

tum mechanical problems. There are two common ap-W’ € above schemes can be modilied o improve efil
proaches in spectral analysis. The spectral mefidd13 ciency. In the pioneering work of Fedt al. [13], for ex-

. . ample, three symmetry-adapted wave packets were
takes advantgge of the unltary tranfsformat|on between thSropagated to take advantage of the threefold rotational sym-
energy domain and the generalized time don@inA well-

. X ) metry of the Haon-Heiles system. Each propagation gener-
known examp'le is the exponential Fourier transform betvx{eerétes a spectrum in the corresponding symmetry. A similar
energy and time[14]. For the Chebyshev propagator, its sirategy was taken in a recent study of acetylene by Liu and
angle(i.e., the effective energydomain is related to its order \jyckerman [26]. The advantage of such a symmetry-
(i.e., the effective timpdomain by a cosine Fourier trans- adapted approach is obvious. According to the uncertainty
form [4]. The spectrum and eigenstates of a system can bgrinciple, the resolution of a spectrum is inversely propor-
determined via the appropriate transformation from the cortional to the number of propagation steps. The breakdown of
relation function and the propagation states, respectively. lthe spectrum into symmetry species is likely to reduce the
the spectral method, the energy resolution is inversely progensity of states and thus the number of propagation steps.
Furthermore, it often occurs that energy levels with different
symmetries form nearly degenerate clusters in the spectrum.
* Address after July 1, 1998: Department of Chemistry, UniversityUnder such circumstances, the symmetry-adapted approach
of New Mexico, Albuquerque, NM 87131. represents a natural and efficient way to remove the multi-
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plicity and to assign symmetry to the energy levels. The |\I;E)m)>:|5m|q/0>_ (3)

strategy is similar to the symmetry decomposition of the

Hamiltonian matrix in direct diagonalization. The computa-The construction of the projection operators is well docu-

tional SaVingS can be Significant for h|gh|y excited states an%ented[27]_ A projection Operatopm also commutes with

for large systems. However, such an approach comes attfie Hamiltonian and the propagator since it is a linear com-

price of propagating multiple wave packets. bination of the symmetry operato§. As a result, the
The method suggested here retains the same spirit as th¢opagation does not mix different symmetry species. The

conventional symmetry-adapted method mentioned abovgth step symmetry-adapted propagation states can be ob-

but differs in that only a single wave packet needs to b&ained by the projection of a single wave packet:
propagated. All the symmetry components are projected out

from this wave packet at each propagation step, thanks to the [W(™y= 0 (H) [T ™y = U (H) P o)
commutability between the symmetry operators and the sys-
tem Hamiltonian. Our method thus has the same accuracy as
the multiple wave packet method, but much less computa- _ . )
tional costs. In the next section, the method is presented if? other words, a single wave packet gives rise Nb

Pl (F)[W o) =P Wy). (4)

more detail. In Sec. Ill, a simplified multielectron atomic Symmetry-adapted propagation states. o
model is employed to illustrate its applicability and effi- Often, correlation functions are the only quantities needed
ciency. The conclusion is presented in Sec. IV. in spectral analysis. Thu$4 symmetry-adapted correlation
functions can be calculated from a single propagation
I THEORY M=) = (=) (6

We seek, using propagation based methods, the efficient . L -
solution of the tirr?egnd%pgendent Schinger equation where the idempotency of the projection operatd? )’

=P,,, is used for the second and third parts of the equation.
AIE)=E,|E) ) The stat.e})((m)> can be arbitrarily chosen provided it has the
' appropriate symmetry, but it is typically given by the
symmetry-adapted initial wave pacMelfgm)>. In this case,

whereErT and_|En) are the discrete eigenva!ueg and the cor Eq. (5) yields the autocorrelation function. According to Eq
responding eigenstates of the system Hamiltomamespec- (5), the correlation function can be calculated in one of the

tively. The direct diagonalization approach is rejected be- - X .
T, three forms. If the projection can be done with minimal com-
cause of its inefficiency for large problems. We further

) ) ) putational resources, the first or the third form is preferred
consider a physical system belonging to a symmetry g®up i
; ~ : . for reasons that become clear below. In cases where the pro
that contains dg symmetry operatorss;eS with i

—1.2...d<. By definition, a symmetry operator commutes jection is expensive, the second form is numerically favored
onels. BY O6F ' y y operator cc because only the initial state needs symmetrization.

with the Hamiltonian of the same systegH=HS;. In The efficiency of the method can be further improved if

other words, it is always possible to find common eigenstate§ne can take advantage of the inherent symmetry of the

for both the Hamiltonian and the symmetry operators. Furyqnagator. For example, the length of a time autocorrelation

ther, the symmetry operators should also commute with thg,ntion can be doubled becau€e =( oW »)=(\| ¥\

propagator §;Uy(H) =U(H)S;, becauseUy(H) is an op-  and Cyy_,=(W¥,_,|¥,) [28]. Similar savings can be

erator function ofH. Therefore, symmetry properties of a gchieved for the Chebyshev propagatiorﬁok(ﬁ)

wave packet are conserved during propagation. In the——cosk arccos|:|)] as well[4,22]:

method used by Feitt al. [13], multiple symmetry-adapted ’

initial wave packets were constructed by symmetrization. Czk—j=2<‘1’k—j|‘1’k>—cj for j=0,1. (6)

The propagation of each wave packet results in an indepen-

dent series of propagation states that can be used to gener&tewever, such extensions can only be applied when the

the symmetry-adapted spectrum. This strategy is more effsymmetry-adapted propagation states are explicitly projected

cient than the single wave packet propagation with no symeut at all the steps. If the second part of Ef) is used to

metry adaptation. calculate the correlation function, no such saving is permit-
In our method, a single wave packet is propagated and thied.

symmetry-adapted propagation states are obtained at every The symmetry-adapted propagation states and correlation

propagation step by projection. The initial wave packet isfunctions can be subsequently employed to determine the

designed to contain all the symmetry species, eigenvalues and eigenstates via either the spectral method or
filter diagonalization. In this work, the eigenproblem is
M solved for a prespecified energy range using a low storage
|Wo)= 21 an| Py, an#0, (2)  version of the filter-diagonalization methf2l—25. Specifi-
=

cally, a generalized eigenequation

whereM denotes the number of symmetry species, or irre- HB=ESB (7)
ducible representations, belonging to the symmetry gi@up

The symmetry-adapted initial wave packets, which are thdS solved using areisPACK routine [29]. The Hamiltonian
eigenstates of the corresponding symmetry operators, can lfil) and overlap §) matrices in a subspace spanned by the
obtained by using symmetry projection operators filtered stateg§W(E,))=F(H|E)|¥,) can be obtained di-
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rectly from the autocorrelation function with no explicit W)Xy, %) =[P (X, X0) + W (Xp,X1)
computation of the filtered stat¢25]
—W(=Xy,=X2) =V (=Xz,—X1)]/4,
Hy=(W(E)|H|¥(E)) (11b
2K-1

= S FEJEIEFENENGED, @ xRV X=X
m=0

_\I,(_le_XZ)+\I,(_X21_Xl)]/4a
S =(W(ED[V(E)) (119

2K—1 T (X, %) =[P (Xq ,X0) — W (Xs,
= S F(EqE)F(EqENG(EL. (8D G =L O e O )
=0 +W(—Xq,X) =V (—Xy,—Xq)]/4,

whereK is the number of Chebyshev propagation steps. The (119

spectral function is expressed as a discrete cosine Fourighhare the superscripts of the symmetrized wave functions
transform of the autocorrelation function in the Chebyshevy,(s;s) ganote the sign of the eigenvalues of the permutation

order domain and inversion operators
2K-1 ~ ~
S, V(1% =g P81%) (8152 = g, P (S152), 12
G(En= 2 (1—8/2)cogk arccosE,)Cy, (9) ! ! 2 2 12
k=0 Similarly, four symmetry-adapted autocorrelation functions

. can be definedcf. Eq. (5)].
and {Er} are the Gauss-Chebyshev quadrature points. For In our numerical test reported here, a square Fourier grid

more details of the method, confer RE25]. . as used for the two coordinates: 512 points are evenly dis-
Since our approach propagates only a single wave pack? ibuted in[—80 a.u. 80 a.4.for bothx; andx,. The Car-

yet provides an equal amount .Of |_nfo_rrnat|on, the COmpUt"’h[esian coordinate system is capable of reflecting the inherent
tional cost for the propagation is significantly reduced com-,

pared with the multiple wave packet approach of Feil, symmetry of the system. The spectral span of the discretized

[13]. This is most conspicuous for systems with lahde Hamiltonian with a kinetic energy truncation of 20 a.u. is
' P y 3 approximately betweer 3 and 22 a.u., which is rescaled to

[—1,1] for the Chebyshev propagator. The spatial grid is
Ill. MODEL AND RESULTS certainly insufficient to converge high Rydberg states due to
the long range Coulomb tail. However, our main concern in
his work was on how the filter diagonalization can be en-
%hanced by the symmetry adaptation. Hence, the discretized

To numerically test the method proposed in the previou
section, we used a simple atomic model consisting of tw
one-dimensional spinless electroh30]. This model has
been used to study multiphoton ionization of multielectron
atoms in intense laser fieldi80,31]. The Hamiltonian of the
system is given below

TABLE I. The lowest 20 eigenenergies of the model atom.

n E, (a.u) $1Sy

A 1 02 1 52 2 2 1 —2.896990 ++

H=— - —— — — 2 —2.297258 -—

20x; 20X \Je+xd \e+x2 3 ~2.163914 +—

4 —2.096496 —+

2 5 —2.078994 ++

+ N (10 6 —2.026408 --

et (Xp=x1) 7 —2.007633 +—

8 —1.989979 -+

wheree =0.55. , 9 ~1.985736 ++
Obviously, the system has the following symmetry opera- 10 —1.970025 _
tipns: the permutation between the two electrons 11 1963992 4
[S1:(X1,X2)—(X2,X1) ] and the inversion of the two coordi- 12 _1'957250 4
nates [S;:(Xy,X2)—(—X1,—Xp)]. Thus, the symmetry 13 B 1.955622 iy
group contains four element§={1,5,,5,,5;5,} since s? 14 _1'949004 o
=8§2=1 and §,5,=8§,5,. Given an arbitrary wave function 15 —1.946340 i
W (x1,Xp), four symmetry species can be constructed: 16 ~1.943111 —+
G 17 —1.942322 ++

W (Xq %) =[P (Xq,X2) + W (X2, Xq) 18 —1.938927 ——
19 —1.937495 +-

VXL mX) W (=X, —x) 14, 20 ~1.935915 -+

(113
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10° Lo . ‘ metries of the system and to the weak coupling between the
10° . | two electrons. The autocorrelation functions were calculated
= ? oo voonooan using projected propagation statidigst part of Eq.(5)] to
S 10° ° wpﬂﬁ ] facilitate the doubling of the propagation stdp§ Eqg. (6)].
& 10° %&55555553352 | For 2K=3000, all the eigenvalues below 1.5 were con-
3 o verged beyond seven significant figures. The convergence
o 10°! i, Joao ] with other adjustable filtering parameters was also checked.
g 10°5 | The convergence rate of filter diagonalization with respect
a o to the number of propagation steps is primarily determined
10°® by the smallest energy gap in the spectrum. In Fig. 1, the

24 -22 20 18 16 -14 energy gap between two adjacent leveAE(=E,—E, ;)

energy is plotted as a function of energy for the overall spectrum
(upper panel and for each of the four symmetry species
10° 5 ‘ : ‘ ‘ ‘ (lower panel. The smallest energy gap AE=3.8
++ x10 % a.u.) for the overall spectrum occurs nefir=
- —1.7288 a.u. between two nearly degenerate states with dif-
— ferent symmetries. This diminishingly small energy gap be-
®® comes a bottleneck for the conventional spectral analysis.
o Indeed, the 70th and 71st states cannot be resolved using the
& 1 conventional filter diagonalization even for the longest
propagation (K=32 000) carried out by us. As shown in
b Table I, only one of them can be identifig@he error listed
in this and the next tables is defined as the difference be-
tween an eigenvalue and the corresponding “exact” value,
which is obtained with SAFD andk= 32 000) This should
FIG. 1. Energy gaps as functions of energy far the overall ~NOt come as a surprise because such a fine resolution would
spectrum and(b) the symmetry-adapted spectra. The energy isrequire~10° Chebyshev propagation steps according to the
given in a.u. uncertainty principle.
On the other hand, the energy gap for the symmetry-
Hamiltonian merely serves as a numerical prototype. The@dapted spectra, as shown in Figb)l is typically much
action of the Hamiltonian onto a wave packet was evaluatetarger than that of the overall spectrum. This is because the
using the fast Fourier transform methptB,32. The eigen- symmetry decomposition removes much of the four-fold
values in the rang¢—3 a.u., —1.5 a.u] were determined near degeneracy. For the two states discussed in Table I, for
using the filter-diagonalization method outlined in the lastexample, the SAFD had no problem in converging them and
section. Specifically, a wave packet containing all the sym-only about one-tenth of propagation steps were needed.
metry species was propagated in the Chebyshev order do- Interestingly, the energy gaps for all four symmetry spe-
main [4]. Autocorrelation functions were calculated for the cies in this model fall roughly on a single curve, as shown in
original wave packet and for the four symmetry spe¢ies.  Fig. 1(b). This can be attributed to the weak coupling be-
(5)]. The five correlation functions were then used to con-sween the two electrons and the resulting degeneracy. The
struct the corresponding Hamiltonian and overlap matricesmallest gap occurs &= —1.9315 a.u. between twet +)
[Egs.(8) and (9)] [25] that were subsequently diagonalized (21st and 24th states. This energy gapAE=4.0
via a generalized eigensolvig?9]. The results are denoted as X 10 2 a.u.) is approximately three orders of magnitude
either filter diagonalizatiofFD) or symmetry-adapted filter larger than the smallest gap of the overall spectrum. There-
diagonalization(SAFD). fore, much fewer Chebyshev steps were needed to converge
The lowest 20 converged eigenvalues of the discretizethe eigenvalues. Table Il presents some data to illustrate the
Hamiltonian are listed in Table | along with their symmetry convergence with respect to the propagation steps for four
assignment. The ground level is Gf +) symmetry and well  states in the vicinity of the energy. It is obvious that the
separated from the excited levels. The excited levels appe&AFD converges significantly faster than the conventional
to form four-component clusters, which become increasinglyFD. The results in Tables Il and Il indicate that the
degenerate as energy increases. The fourfold near degesymmetry-adapted filter diagonalization can at least reduce
eracy can be attributed to the permutation and inversion synthe computationalcost by a factor of five for this system.

4

X + o 0
+
1

10 | %

102 |

energy spacing

10° —— :
-2.1 -1.9 -1.7 1.5

energy

TABLE Il. Convergence with respect tok2for two levels with the smallest energy gap in the overall
spectrum. The symmetry-adapted filter diagonalization and conventional filter diagonalization are denoted as
SAFD and FD, respectively.

5E (SAFD) 5E (SAFD) 5E (FD) 5E (FD)
Energy(a.u) 2K =1600 2K =2000 2K =16 000 2K =32 000
= —1.728 815305597 —2.4x10° 7 —7x10 12 Missed Missed

En —1.728 811 496 969 3610°° 3.0x10°° -7.2x107° —-8.0x10°8
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TABLE Ill. Convergence with respect tokK2 for four levels nearE=—1.93 a.u.(see text The
symmetry-adapted filter diagonalization and conventional filter diagonalization are denoted as SAFD and FD,
respectively.
SE (SAFD) SE (SAFD) SE (FD) SE (FD)
Energy(a.u) 2K =2500 2K =3000 2K =16 000 2K =20 000
Ezo —1.935 914 824 370 231078 —1.5x107° —1.5x1077 5.0x107 1
Exn —1.935523855470 —1.7x10°° 2.1x107° —8.8x1077 3.7x1071°
Eos —1.931 892 900 658 6210 8 3.8x10°° 1.3x10°° 3.9x10°8
Eos —1.931 510 559 410 2:810°° —1.0x10°° Missed 2.x10°¢

IV. CONCLUSION which a number of initial states is propagated simultaneously
Many physical systems possess certain types of symm§3’34]' In our method, the prppggat_lo_n of multiple
try. It is thus important to take advantage of the symmetry insymmetry-ad_apted wave packets is lmpI|C|tIy_ex_ecuted_by
numerical calculations, particularly for large systems and forthe propagation of a single wave packet. This is possible
highly excited states We have shown in this work that thebecause th? symmetry components are mutually orthogonal
gnly : : .—and the projection operators commute with the propagator. In
spectral analysis can be enhanced by symmetry adaptatio lis sense, our scheme is an implicit block method that has
In our method, only a single wave packet is propagated an&e advant,age of the block method but costs less. Of course
the symmetry components are obtained by using projectio e symmetry adaptation can also be applied to’ the block,
operators along the propagation. Hence, the propagation &ethod to enhance its own efficiency
multiple symmetry-adapted wave packets is avoided. The Admittedly, the model used to illljstrate the method is
numerical results clearly demonstrated that symmetry adap- :

tation can sianificantly improve converaence. There are twi oversimplified. However, the results reported for this nu-
9 yimp 9 ' erical prototype are encouraging and revealing. Calcula-

ons with larger systems, such as the vibrational spectrum of
%?anar acetylene, are currently underway and symmetry en-

by a factor .Of M (M :.4 for the numerical tekt The hancement has been found to be significant. The results will
M -factor scaling law typically cuts the number of propaga-, published elsewhef&s]

tion steps to WM. Second and sometimes more importantly,
the symmetry decomposition removes the symmetry-induced
near degeneracy responsible for the slow convergence in the
spectral analysis with no symmetry adaptation. The removal
of the near degeneracy results in an additional improvement This work was supported by the National Science Foun-
in numerical efficiency over th#l -factor scaling law. dation(Grant No. CHE-9713995and by the Petroleum Re-

A different way to understand the enhancement is to comsearch Fund administered by the American Chemical Soci-
pare the scheme suggested here with the block method ty.

ACKNOWLEDGMENTS

[1] R. Kosloff, J. Phys. Chend2, 2087(1988. [15] D. Neuhauser, J. Chem. Ph&3, 2611(1990.

[2] R. Kosloff, Annu. Rev. Phys. Cherd5, 145(1994). [16] D. Neuhauser, J. Chem. Phgb, 4927(1991).

[3] R. Chen and H. Guo, J. Chem. Phy€8 6068(1999. [17] R. Chen and H. Guo, J. Chem. Phy€5 1311(1996.

[4] R. Chen and H. Guo, J. Chem. Ph{€5 3569(1996. [18] V. A. Mandelshtam, T. P. Grozdanov, and H. S. Taylor, J.
[5] C. Lanczos, J. Res. Natl. Bur. Starth, 255 (1950. Chem. Phys103 10 074(1995.

[6] H. Tal-Ezer and R. Kosloff, J. Chem. Phy&l, 3967 (1984). [19] V. A. Mandelshtam and H. S. Taylor, J. Chem. Soc., Faraday

[7] R. Kosloff and H. Tal-Ezer, Chem. Phys. Lett27, 223 Trans.93, 847 (1997.

(1986.

[8] Y. Huang, W. Zhu, D. Kouri, and D. K. Hoffman, Chem. Phys.
Lett. 206, 96 (1993.

[9] W. Zhu, Y. Huang, D. J. Kouri, C. Chandler, and D. K. Hoff-
man, Chem. Phys. Let217, 73 (1994.

[10] V. A. Mandelshtam and H. S. Taylor, J. Chem. Ph$82
7390(1995.

[11] R. N. Silver and H. Rder, Phys. Rev. 56, 4822(1997.

[12] E. J. Heller, J. Chem. Phy&8, 2066(1978.

[13] M. D. Feit, J. A. Fleck, and A. Steger, J. Comput. Ph43.
412 (1982.

[14] A. Messiah,Quantum MechanicéWiley, New York, 1968.

[20] P.-N. Roy and T. Carrington, J. Chem. Ph¥83 5600(1995.

[21] R. Chen and H. Guo, Chem. Phys. L&x61, 605(1996.

[22] M. R. Wall and D. Neuhauser, J. Chem. Phy€2 8011
(1995.

[23] V. A. Mandelshtam and H. S. Taylor, J. Chem. Ph¥66,
5085(1997).

[24] V. A. Mandelshtam and H. S. Taylor, Phys. Rev. Lét8,
3274(1997).

[25] R. Chen and H. Guo, Chem. Phys. L&%9, 252 (1997.

[26] L. Liu and J. T. Muckerman, J. Chem. Phyt€7, 3402(1997).

[27] G. C. Schatz and M. A. RatneQuantum Mechanics in Chem-
istry (Prentice-Hall, Englewood Cliffs, NJ, 1983



57 SYMMETRY-ENHANCED SPECTRAL ANALYSIS VIA THE . .. 7293
[28] V. Engel, Chem. Phys. Letl.89 76 (1992. [32] D. Kosloff and R. Kosloff, J. Comput. Phy§2, 35(1983.
[29] B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler,[33] R. G. Grimes, J. G. Lewis, and H. D. Simon, SIAM J. Matrix

Matrix Eigensystem Routines—EISPACK Guide Extension Anal. Appl. 15 228(1994.
(Springer-Verlag, New York, 1977 [34] T. J. Minehardt, J. D. Adcock, and R. E. Wyatt, Phys. Rev. E

56, 4837(1997.
[30] R. Grobe and J. H. Eberly, Phys. Rev. L&, 2905(1992. [35] R. Chen, H. Guo, L. Liu, and J. Muckerman, J. Chem. Phys.
[31] D. Bauer, Phys. Rev. A6, 3028(1997).

(to be publishef



